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Motivation

Typical climate conditions for the 20th century
may not provide adequate design parameters
for the built environment of the 21st century.



Observed climate change
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Projected temperature change
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Observed climate change: Iowa
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Observed climate change: Iowa
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Previous work

The currently accepted method for assessing
impacts of climate change is to downscale
information from GCMs and add these
changes to the current climate to produce an
estimate of future climate

Imposed offset or "morphing” method

Belcher et al. (2005)

Used by Chan (2011), Chen et al. (2012), Coley and
Kershaw (2010), Holmes and Reinhart (2011), Jentsch
et al. (2013)



Previous work

Huang (2006)

Used global climate models (GCMs) for four future
climate scenarios

Finding: Net energy use will increase by 25 - 28% by
2100 in L.A.

Crawley (2008)

Used GCMs with statistical downscaling for four climate
change scenarios and 25 locations

Finding: Change in energy use by climate:
Cold: -10%
Tropical: +20%
Mid-latitude: change from heating to cooling



Improvements to methodology

Dynamical downscaling

Results applicable to all U.S. locations
available in the TMY3 database

Use of multiple GCMs and RCMs to quantify
the range of uncertainty in future climate
projections



Our study methodology

Creation of future typical meteorological year
(FTMY) dataset

Future Current
(NARCCAP) ==  (NARCCAP)
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Selection of locations

o Dry (B) Moist (A)
Marine (C)

All of Alaska in Zone 7
except for the following
Boroughs in Zone 8

Bethel Northwest Arctic

Dellingham Southeast Fairbanks

Fairbanks N. Star Wade Hampton Zone 1 includes
Nome Yukon-Koyukuk Hawaii, Guam,
North Slope Puerto Rico.

and the Virgin Islands

Figure 1 Climate zone classification
(Credit: Briggs et al. [2003]; DOE [2005])
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Three different datasets used

NARCCAP

- 288888238



TMY3

TMY3 dataset (Wilcox and Marion 2008)

1976 - 2005
Derived from observations

Individual months selected
Global horizontal radiation
Direct normal radiation
Dry-bulb temperature
Dew-point temperature
Wind speed

Annual dataset consisting of hourly values
Includes natural diurnal and seasonal variations



Observations

Observed dataset (NCDC ISD)
1976 - 2005
30-year dataset consisting of hourly values
Months influenced by volcanoes removed
Same stations as used in TMY3 creation



TMY evaluation

Table 3.1 Difference Between TMY3 and Observations for Chicago, IL

Month Totcld Dry-bulb Dew-point Rhum Ahum Pressure Wspd Wdir

tens °C °C % g cm ™ mbar ms~! deg
1 -0.31 0.57 -0.07 -2.99 -0.04 1.40 -0.26  -2.85
2 -0.64 -0.07 -1.22 -6.28 -0.26 -3.81 0.04  -24.35
3 -0.25 0.47 0.82 1.89 0.08 0.61 0.17  -13.65
4 0.43 0.33 1.66 5.03 0.82 2.86 -0.30  -18.86
5 -0.46 -0.10 -1.06 -2.66 -0.70 -0.74 -0.87  -8.66
6 -0.10 0.27 -0.72 -4.19 -0.56 1.55 0.92  -34.18
7 -0.06 0.51 1.82 5.48 1.53 0.46 0.46  -29.21
8 -0.04 -0.68 -0.17 1.76 -0.19 -0.08 0.30 18.96
9 0.14 -0.33 0.57 4.37 0.21 -0.90 -0.38  23.33
10 -0.36 -0.15 -0.26 -1.00 -0.33 0.60 0.41  -13.48
11 0.71 0.07 0.95 3.98 0.81 -0.29 0.54  -11.67
12 -0.36 -1.23 -1.06 0.61 -0.40 -0.69 -0.49  -3.17
Avg -0.11 -0.03 0.11 0.50 0.08 0.08 0.04 -9.82
Avg SD (Obs) 0.74 2.03 2.11 4.59 0.91 1.83 0.48 27.75
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# Differences are generally quite small




NARCCAP

International program to produce high
resolution climate change simulations

Configuration
Domain covers U.S. and most of Canada
50 km spatial resolution
Forced with SRES A2 emissions scenario

NCEP Reanalysis (obs-driven; 1979-2004), current
period (GCM-driven; 1971-2000), and future period
(GCM-driven; 2041-2070)

3-hourly values



Emission scenarios

Global surface warming (°C)
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Improvements to methodology

Dynamical downscaling

Results applicable to all U.S. locations
available in the TMY3 database

Use of multiple GCMs and RCMs to quantify
the range of uncertainty in future climate
projections



RCMs: Dynamical downscaling

Impacts of climate change are currently
assessed by “statistically downscaling”

information produced by GCMs for specific
locations.

“"Dynamical” downscaling

An alternative method to that used by Karl et al. (2009),
Xu et al. (2009), Crawley (2008), and Guan (2009)

GCMs provide boundary conditions for RCMs

North American Regional Climate Change Assessment
Program (NARCCAP, 2010)



Resolution comparison
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Resolution comparison
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Example: Modeled terrain
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Quantification of uncertainty

A2 Emissions Scenario
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Application to locations
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Model evaluation
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Model biases

_ Dry-bulb Temperature ‘
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Model biases
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Model projected change

Table 4.1 Average NARCCAP Annual Projected Change

City Totcld Dry-bulb Dew-point Rhum Ahum Pressure Wspd Wdir Precip
tens . @) °C % gem® mbar  ms!  deg mm
Atlanta, GA -0.21 2.90 1.88 -1.21 1.29 0.33 -0.05  -0.98 1147
Baltimore, MD -0.14 2.46 2.14 -0.77 1.25 0.27 -0.06  -5.85 3.75
Chicago, IL -0.06 2.65 2.30 -0.70 1.06 0.23 -0.05  -3.88 22.50
Denver, CO -0.05 2.67 1777 -1.85 0.63 1.26 -0.10  -1.02  -37.45
Los Angeles, CA 0.04 1.89 1.82 0.10 1.08 0.09 -0.07  -5.63 -5.08
Miami, FL -0.38 1,92 1.64 -0.92 1.71 0.27 0.02 -1.96  -129.56
Minneapolis, MN  -0.04 2.63 2.49 -0.02 1.02 0.28 -0.03  -5.02 28.72
Phoenix, AZ -0.03 2.45 1.46 -2.09 0.67 0.40 -0.06 2.47 -51.03

Seattle, WA -0.07 1.91 1.80 -0.11 0.83 0.42 -0.07 0.94 2.55




Model projected change

Table 4.1 Average NARCCAP Annual Projected Change

City Totcld Dry-bulb Dew-point Rhum Ahum Pressure Wspd Wdir Precip
tens . @) °C % gem® mbar  ms!  deg mm
Atlanta, GA -0.21 2.30 1.88 -1.21 1.29 0.33 -0.05 -0.98 114
Baltimore, MD -0.14 2.46 2.14 -0.77 1.25 0.27 -0.06  -5.85 3.75
Chicago, IL -0.06 2.65 2.30 -0.70 1.06 0,23 -0.05  -3.88 22.50
Denver, CO -0.05 2.67 1.7 -1.85 0.63 1.26 -0.10  -1.02  -37.45
Los Angeles, CA 0.04 1.89 1.82 0.10 1.08 0.09 -0.07  -5.63 -5.08
Miami, FL -0.38 1.92 1.64 -0.92 1.71 0.27 0.02 -1.96  -129.56
Minneapolis, MN  -0.04 2.63 2.49 -0.02 1.02 0.28 -0.03  -5.02 28.72
Phoenix, AZ -0.03 2.45 1.46 -2.09 0.67 0.40 -0.06 247  -51.03
Seattle, WA -0.07 1.91 1.80 -0.11 0.83 0.42 -0.07 0.94 2.55

# Increasing temperatures from 1.5°C to 3.0°C

# Decreasing cloud cover, relative humidity and wind speed



Model inter-comparison

Ranked projected changes of each model
combination from 1 to 9
HRM3-GFDL (model combination)
1 for dry-bulb temperature
O for dew-point temperature
CRCM (RCMs)
3-4 for dry-bulb temperature
1-2 for dew-point temperature
CCSM (GCMs)
2-3 for dry-bulb temperature
1-4 for dew-point temperature



Significance

Does the model projected change exceed
both the natural variability of the 20th century
and inter-model variability?

Table 4.2 Average Annual Projected Change for Chicago, 1L

Value Totcld Dry-bulb Dew-point Rhum Ahum Pressure Wspd Wdir Precip
tens °C °C % g cm mbar ms ' deg min

Projected Change -0.06 2.65 2.30 -0.70 1.06 0.23 -0.05 -3.88 22.50

SD of Model Change 0.11 0.47 0.39 2.00 0.24 0.53 0.08 1.98 51.31

SD of 20th C Obs 0.31 0.89 1.00 2.82 0.42 0.59 0.34 14.69  261.92
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Seasonal changes
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Seasonal changes

Dry-bulb Temperature Change (°C)
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Seasonal changes

NARCCAP Projected Change
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Seasonal changes

Relative Humidity Change (%)
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Seasonal changes

NARCCAP Projected Change
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Seasonal changes

Wind Speed Change (m s%)
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Seasonal changes

Precipitation Change (mm)
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Our study methodology

Creation of future typical meteorological year
(FTMY) dataset

Future Current
(NARCCAP) ==  (NARCCAP)

4



Our study methodology

Simulations of buildings using FTMY

FTMY == EPW == Egleurgy

4

Impact of projected climate change on
building design



Climate data in energy modeling

Energy Plus and other modeling software pairs a
building design with one weather file to predict

energy performance

Hourly weather to "Typical Meteorological Year”
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Projected impact on buildings

Table 5.1 Principal Commercial Building Types (D and R International, 2011)

Building Floorspace Buildings Energy Consumption

Office 17 17 19

Mercantile 16 14 18 SITE ENERGY CONSUMPTION
Retail 6 9 5 BE BRI
Enclosed/Strip Malls 10 4 13

Education 14 8 11 ADJUST

Warehouse and Storage 14 12 7 Toﬁlizs

Lodging 7 3 7 o

. - OTHER

Service 6 13 i+ 14%
Public Assembly 5 6 5 COOKING 2% =
Religious WOI‘Ship 5 8 2 COMPUTERS 2% —.
Health Care 4 3 8 ELECTRONICS 3%
Inpatient 3 0 6 REFRIGERATION -
Outpatient 2 2 2 5% /
Food Sales 2 H D VENTILATION o
i 6% .
Food Service 2 6 6 i .

] WATER SPACE
Public Order and Safety 2 1 2 HEATING 7%  COOLING 10%
Other 2 2 4
Vacant 4 4 1
Total 100 100 100
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Range of projected consumption
change

Medium Office Projected Change in Heating Energy Consumption

All Locations
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Range of projected consumption
change

Medium Office Projected Change in Cooling Energy Consumption

All Locations
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Significance

Secondary School Projected Change in Heating Energy Consumption
All Locations
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Significance

Secondary School Projected Change in Cooling Energy Consumption
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Latitudinal dependence

Stand-Alone Retail Projected Change in Heating Energy Consumption
All Locations
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Latitudinal dependence

Stand-Alone Retail Projected Change in Cooling Energy Consumption
All Locations
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# Colder locations will save enough heating energy due to
warmer winters to compensate for increase in cooling usage



Balance

Medium Office Projected Change in Energy Consumption
All Models
Chicago, IL
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Concerns

Poor quality precipitation data
Importance of excluded variables

Possible issue with humidity removal within
EnergyPlus simulations

Undersized systems?

Reference building design flaw?

EnergyPlus design flaw?



Conclusions

+ Heating energy consumption predicted to decrease.
v Cooling energy consumption predicted to increase.
BUT:

v Overall annual energy consumptions may increase,
decrease, or remain steady depending on balance between
heating and cooling.

v Future typical meteorological year data can be prepared for
risk analysis of a changing climate.



Future work

> Expand study to suggested modifications or retrofits
»> Changes in materials
» Structural changes
» Associated costs

> Impact of extreme weather

> Application to locations world-wide
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