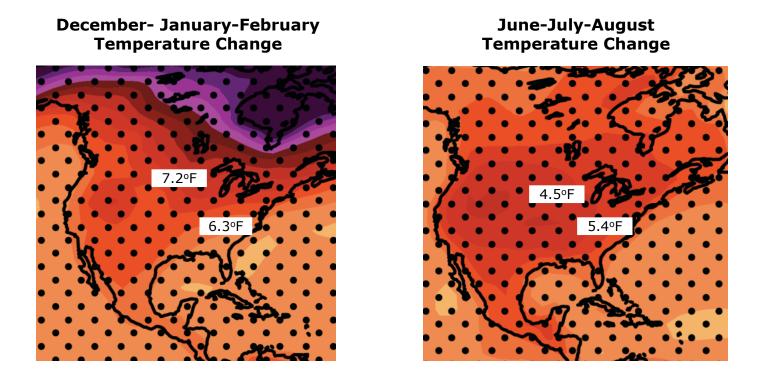

Results from the North American Regional Climate Change Assessment Program (NARCCAP): Model projections for major U.S. cities in different climate zones, the development of a future typical meteorological year, and estimated impact of a changing climate on building energy consumption

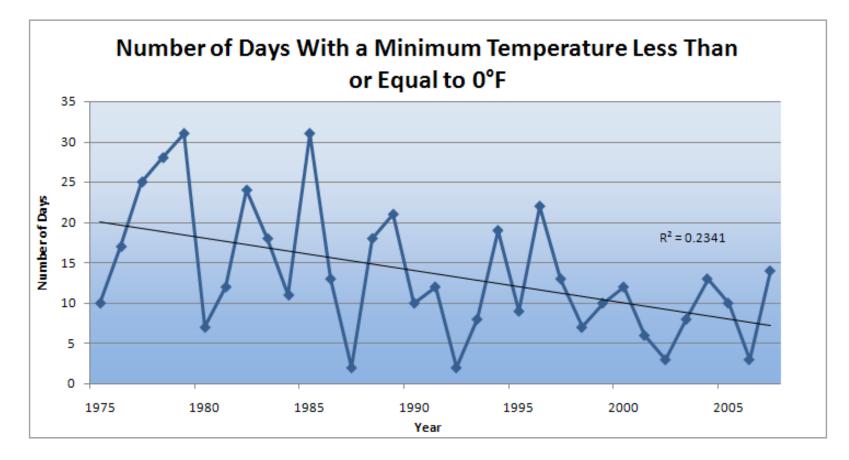
Shannon Leigh Patton Master of Science Candidate

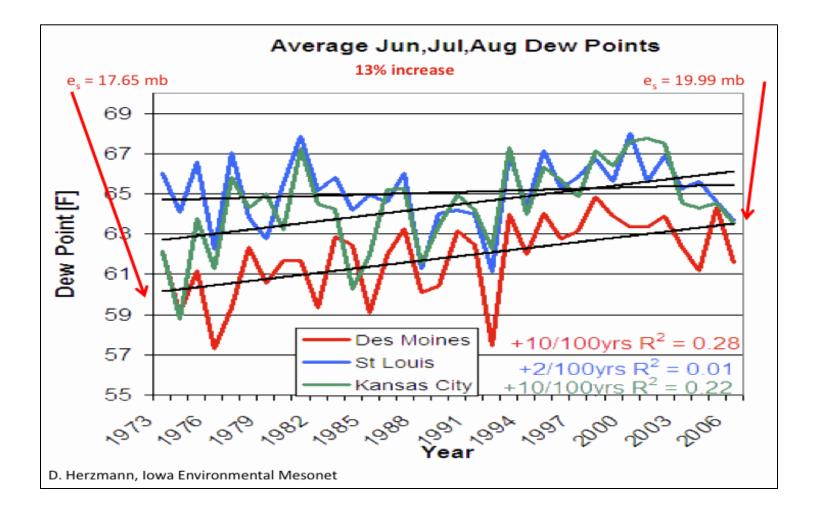
Motivation


 Typical climate conditions for the 20th century may not provide adequate design parameters for the built environment of the 21st century.

Observed climate change

Separate analyses of the temperature record – Trends are in close agreement (IPCC 2007)


Projected temperature change


A1B Emission Scenario: 2080-2099 minus 1980-1999 (IPCC 2007)

Observed climate change: Iowa

Des Moines Airport Data

Observed climate change: Iowa

Previous work

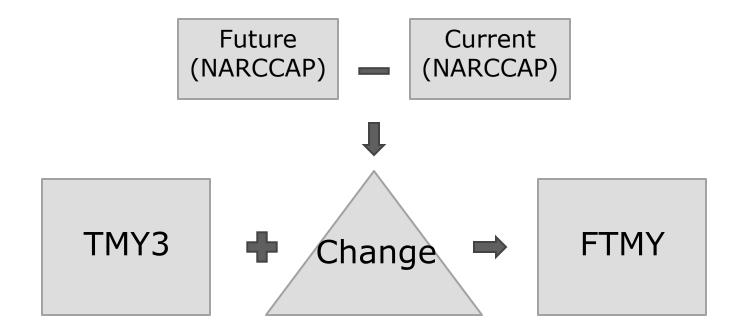
- The currently accepted method for assessing impacts of climate change is to downscale information from GCMs and add these changes to the current climate to produce an estimate of future climate
 - Imposed offset or "morphing" method
 - Belcher et al. (2005)
 - Used by Chan (2011), Chen et al. (2012), Coley and Kershaw (2010), Holmes and Reinhart (2011), Jentsch et al. (2013)

Previous work

Huang (2006)

- Used global climate models (GCMs) for four future climate scenarios
- Finding: Net energy use will increase by 25 28% by 2100 in L.A.

Crawley (2008)


- Used GCMs with statistical downscaling for four climate change scenarios and 25 locations
- Finding: Change in energy use by climate:
 - Cold: -10%
 - Tropical: +20%
 - Mid-latitude: change from heating to cooling

Improvements to methodology

- Dynamical downscaling
- Results applicable to all U.S. locations available in the TMY3 database
- Use of multiple GCMs and RCMs to quantify the range of uncertainty in future climate projections

Our study methodology

 Creation of future typical meteorological year (FTMY) dataset

Selection of locations

Figure 1 Climate zone classification (Credit: Briggs et al. [2003]; DOE [2005])

Selection of locations

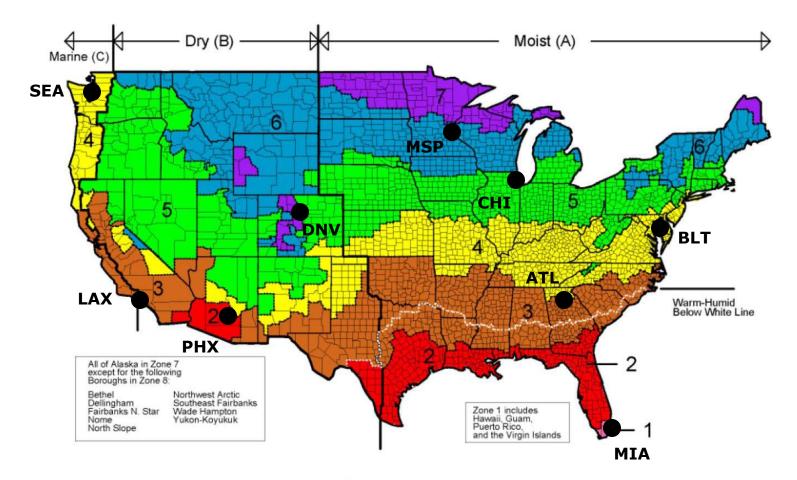
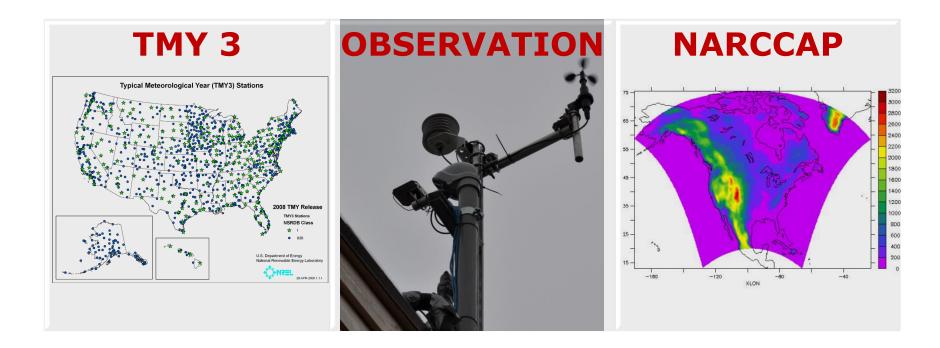



Figure 1 Climate zone classification (Credit: Briggs et al. [2003]; DOE [2005])

Three different datasets used

TMY3

TMY3 dataset (Wilcox and Marion 2008)

- 1976 2005
- Derived from observations
- Individual months selected
 - Global horizontal radiation
 - Direct normal radiation
 - Dry-bulb temperature
 - Dew-point temperature
 - Wind speed
- Annual dataset consisting of hourly values
- Includes natural diurnal and seasonal variations

Observations

Observed dataset (NCDC ISD)

- 1976 2005
- 30-year dataset consisting of hourly values
- Months influenced by volcanoes removed
- Same stations as used in TMY3 creation

TMY evaluation

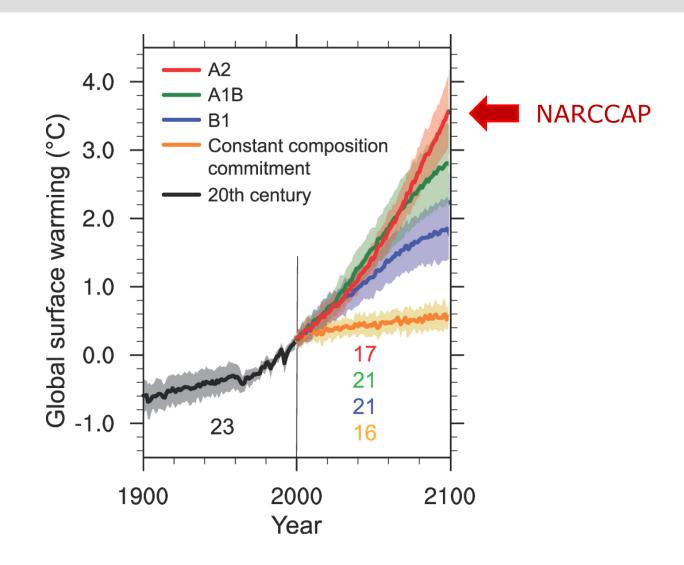
Month	Totcld	Dry-bulb	Dew-point	Rhum	Ahum	Pressure	Wspd	Wdir
	\mathbf{tens}	$^{\circ}\mathbf{C}$	$^{\circ}\mathbf{C}$	%	${f g}~{f cm}^{-3}$	mbar	$\mathbf{m} \ \mathbf{s}^{-1}$	deg
1	-0.31	0.57	-0.07	-2.99	-0.04	1.40	-0.26	-2.85
2	-0.64	-0.07	-1.22	-6.28	-0.26	-3.81	0.04	-24.35
3	-0.25	0.47	0.82	1.89	0.08	0.61	0.17	-13.65
4	0.43	0.33	1.66	5.03	0.82	2.86	-0.30	-18.86
5	-0.46	-0.10	-1.06	-2.66	-0.70	-0.74	-0.87	-8.66
6	-0.10	0.27	-0.72	-4.19	-0.56	1.55	0.92	-34.18
7	-0.06	0.51	1.82	5.48	1.53	0.46	0.46	-29.21
8	-0.04	-0.68	-0.17	1.76	-0.19	-0.08	0.30	18.96
9	0.14	-0.33	0.57	4.37	0.21	-0.90	-0.38	23.33
10	-0.36	-0.15	-0.26	-1.00	-0.33	0.60	0.41	-13.48
11	0.71	0.07	0.95	3.98	0.81	-0.29	0.54	-11.67
12	-0.36	-1.23	-1.06	0.61	-0.40	-0.69	-0.49	-3.17
Avg	-0.11	-0.03	0.11	0.50	0.08	0.08	0.04	-9.82
Avg SD (Obs)	0.74	2.03	2.11	4.59	0.91	1.83	0.48	27.75

Table 3.1 Difference Between TMY3 and Observations for Chicago, IL

TMY evaluation

Month	Totcld	Dry-bulb	Dew-point	Rhum	Ahum	Pressure	Wspd	Wdir
	\mathbf{tens}	$^{\circ}\mathbf{C}$	$^{\circ}\mathbf{C}$	%	${f g}~{f cm}^{-3}$	mbar	$\mathbf{m} \ \mathbf{s}^{-1}$	deg
1	-0.31	0.57	-0.07	-2.99	-0.04	1.40	-0.26	-2.85
2	-0.64	-0.07	-1.22	-6.28	-0.26	-3.81	0.04	-24.35
3	-0.25	0.47	0.82	1.89	0.08	0.61	0.17	-13.65
4	0.43	0.33	1.66	5.03	0.82	2.86	-0.30	-18.86
5	-0.46	-0.10	-1.06	-2.66	-0.70	-0.74	-0.87	-8.66
6	-0.10	0.27	-0.72	-4.19	-0.56	1.55	0.92	-34.18
7	-0.06	0.51	1.82	5.48	1.53	0.46	0.46	-29.21
8	-0.04	-0.68	-0.17	1.76	-0.19	-0.08	0.30	18.96
9	0.14	-0.33	0.57	4.37	0.21	-0.90	-0.38	23.33
10	-0.36	-0.15	-0.26	-1.00	-0.33	0.60	0.41	-13.48
11	0.71	0.07	0.95	3.98	0.81	-0.29	0.54	-11.67
12	-0.36	-1.23	-1.06	0.61	-0.40	-0.69	-0.49	-3.17
Avg	-0.11	-0.03	0.11	0.50	0.08	0.08	0.04	-9.82
Avg SD (Obs)	0.74	2.03	2.11	4.59	0.91	1.83	0.48	27.75

Table 3.1 Difference Between TMY3 and Observations for Chicago, IL


NARCCAP

 International program to produce high resolution climate change simulations

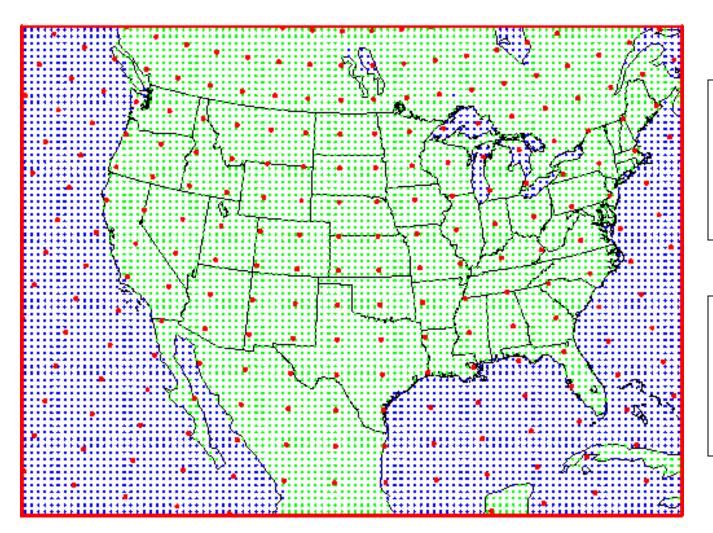
Configuration

- Domain covers U.S. and most of Canada
- 50 km spatial resolution
- Forced with SRES A2 emissions scenario
- NCEP Reanalysis (obs-driven; 1979-2004), current period (GCM-driven; 1971-2000), and future period (GCM-driven; 2041-2070)
- 3-hourly values

Emission scenarios

Improvements to methodology

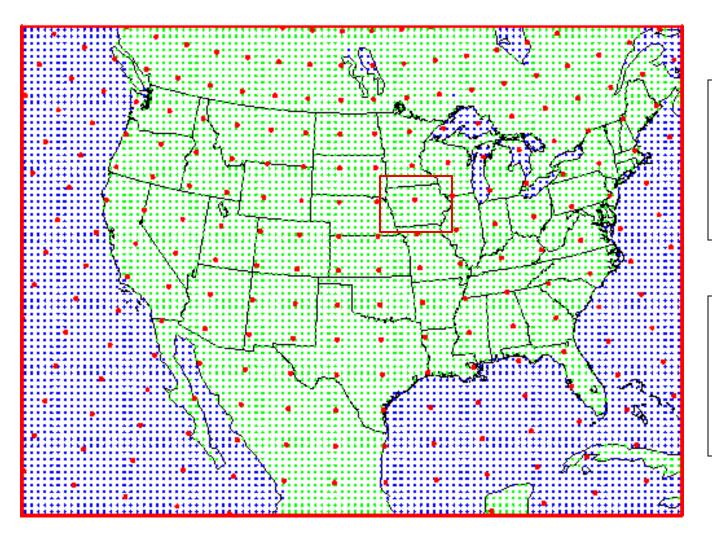
- Dynamical downscaling
- Results applicable to all U.S. locations available in the TMY3 database
- Use of multiple GCMs and RCMs to quantify the range of uncertainty in future climate projections


RCMs: Dynamical downscaling

 Impacts of climate change are currently assessed by "statistically downscaling" information produced by GCMs for specific locations.

Dynamical downscaling

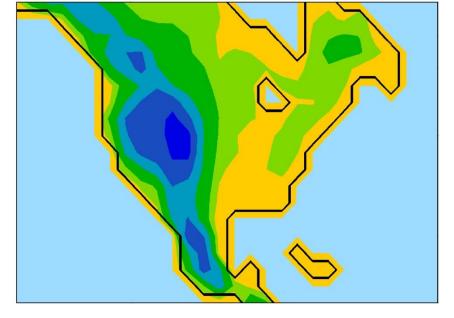
- An alternative method to that used by Karl et al. (2009), Xu et al. (2009), Crawley (2008), and Guan (2009)
- GCMs provide boundary conditions for RCMs
- North American Regional Climate Change Assessment Program (NARCCAP, 2010)

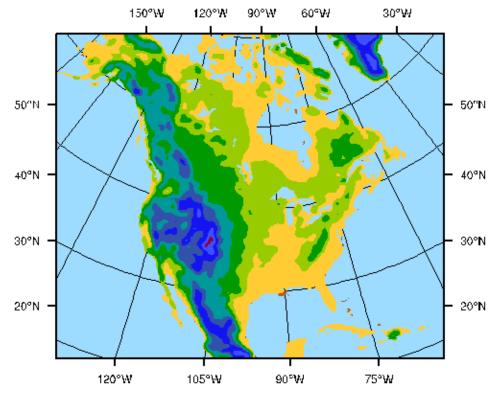

Resolution comparison

global
regional (land)
regional (water)

Only every second RCM grid point is shown in each direction

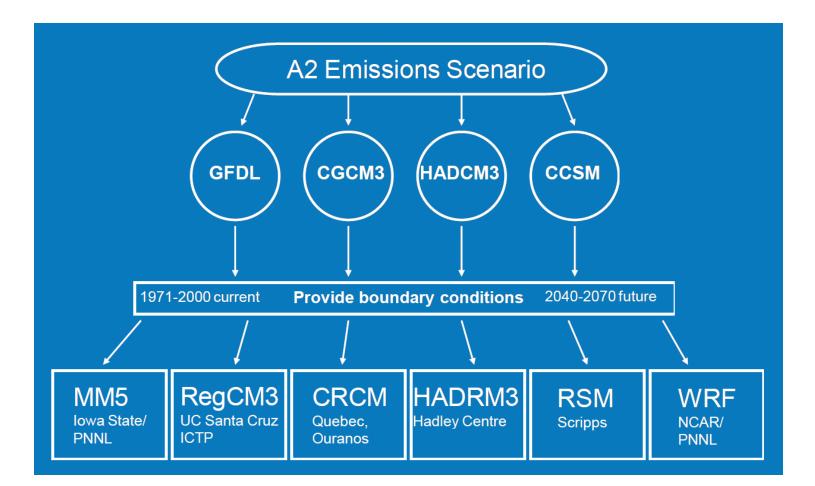
Resolution comparison

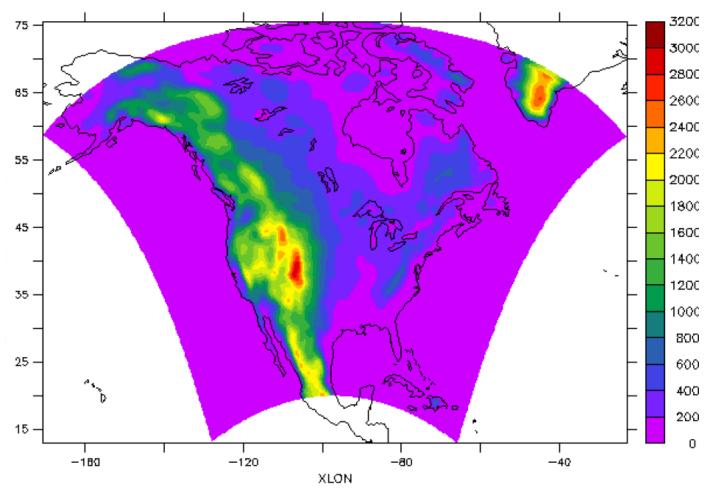



global
regional (land)
regional (water)

Only every second RCM grid point is shown in each direction

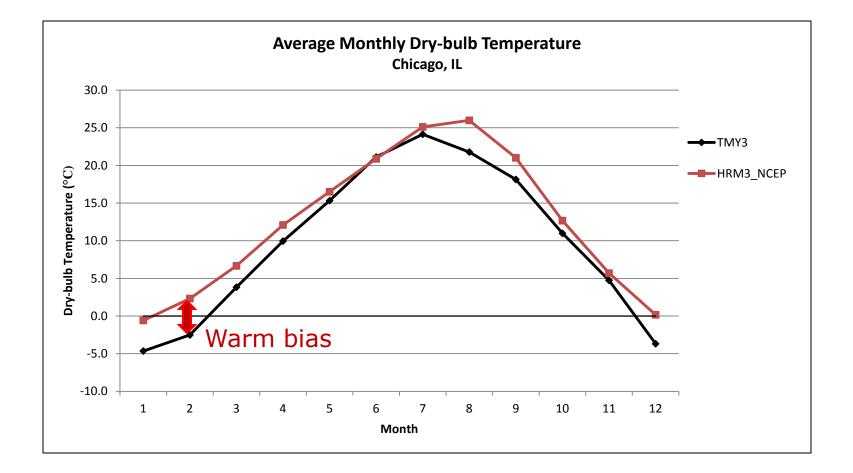
RCM


GCM

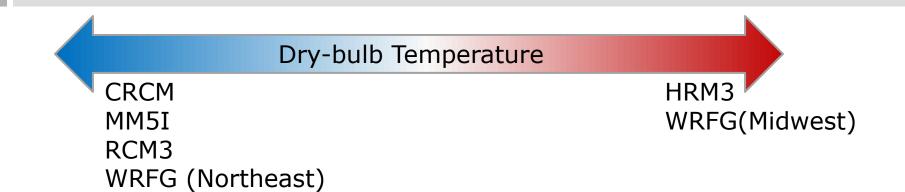


Example: Modeled terrain

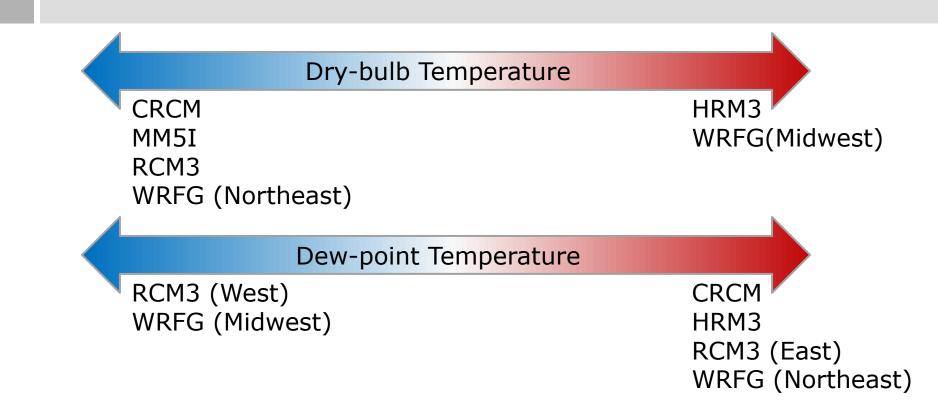
Quantification of uncertainty

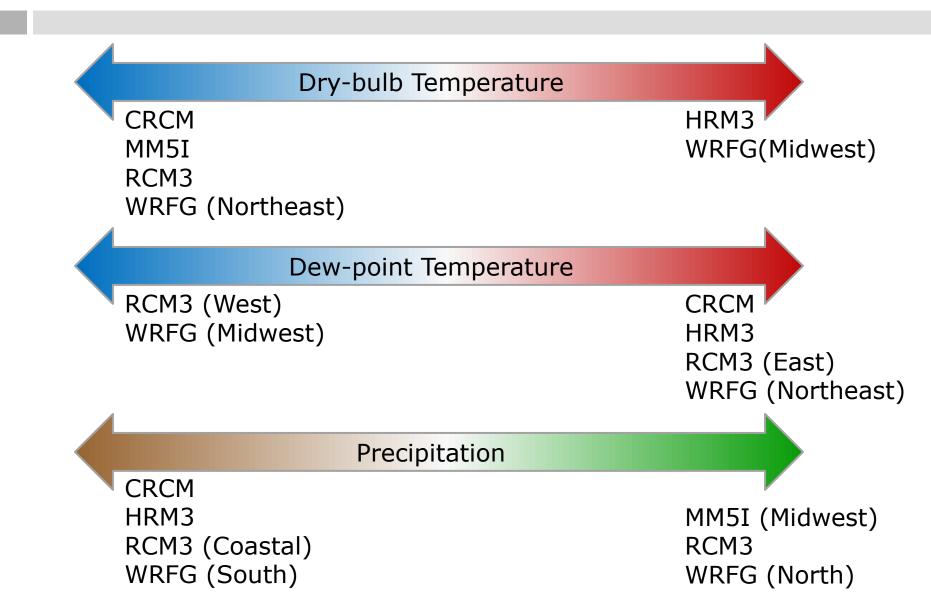


Application to locations



 $\mathbf{H}\mathbf{T}$


Model evaluation


Model biases

Model biases

Model biases

Model projected change

City	Totcld	Dry-bulb	Dew-point	Rhum	Ahum	Pressure	Wspd	Wdir	Precip
	tens	$^{\circ}\mathbf{C}$	$^{\circ}\mathbf{C}$	%	${f g}~{f cm}^{-3}$	\mathbf{mbar}	$\mathbf{m} \ \mathbf{s}^{-1}$	deg	$\mathbf{m}\mathbf{m}$
Atlanta, GA	-0.21	2.30	1.88	-1.21	1.29	0.33	-0.05	-0.98	11.47
Baltimore, MD	-0.14	2.46	2.14	-0.77	1.25	0.27	-0.06	-5.85	3.75
Chicago, IL	-0.06	2.65	2.30	-0.70	1.06	0.23	-0.05	-3.88	22.50
Denver, CO	-0.05	2.67	1.77	-1.85	0.63	1.26	-0.10	-1.02	-37.45
Los Angeles, CA	0.04	1.89	1.82	0.10	1.08	0.09	-0.07	-5.63	-5.08
Miami, FL	-0.38	1.92	1.64	-0.92	1.71	0.27	0.02	-1.96	-129.56
Minneapolis, MN	-0.04	2.63	2.49	-0.02	1.02	0.28	-0.03	-5.02	28.72
Phoenix, AZ	-0.03	2.45	1.46	-2.09	0.67	0.40	-0.06	2.47	-51.03
Seattle, WA	-0.07	1.91	1.80	-0.11	0.83	0.42	-0.07	0.94	2.55

 Table 4.1
 Average NARCCAP Annual Projected Change

Model projected change

City	Totcld	Dry-bulb	Dew-point	Rhum	Ahum	Pressure	Wspd	Wdir	Precip
	tens	$^{\circ}\mathbf{C}$	$^{\circ}\mathbf{C}$	%	${f g}~{f cm}^{-3}$	\mathbf{mbar}	$\mathbf{m} \ \mathbf{s}^{-1}$	deg	mm
Atlanta, GA	-0.21	2.30	1.88	-1.21	1.29	0.33	-0.05	-0.98	11.47
Baltimore, MD	-0.14	2.46	2.14	-0.77	1.25	0.27	-0.06	-5.85	3.75
Chicago, IL	-0.06	2.65	2.30	-0.70	1.06	0.23	-0.05	-3.88	22.50
Denver, CO	-0.05	2.67	1.77	-1.85	0.63	1.26	-0.10	-1.02	-37.45
Los Angeles, CA	0.04	1.89	1.82	0.10	1.08	0.09	-0.07	-5.63	-5.08
Miami, FL	-0.38	1.92	1.64	-0.92	1.71	0.27	0.02	-1.96	-129.56
Minneapolis, MN	-0.04	2.63	2.49	-0.02	1.02	0.28	-0.03	-5.02	28.72
Phoenix, AZ	-0.03	2.45	1.46	-2.09	0.67	0.40	-0.06	2.47	-51.03
Seattle, WA	-0.07	1.91	1.80	-0.11	0.83	0.42	-0.07	0.94	2.55

 Table 4.1
 Average NARCCAP Annual Projected Change

Increasing temperatures from 1.5°C to 3.0°C

Decreasing cloud cover, relative humidity and wind speed

Model inter-comparison

 Ranked projected changes of each model combination from 1 to 9

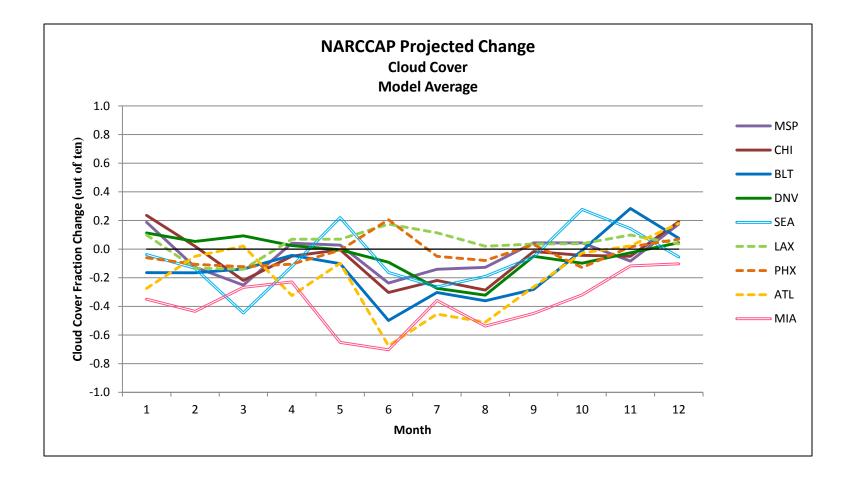
- HRM3-GFDL (model combination)
 - □ 1 for dry-bulb temperature
 - 9 for dew-point temperature
- CRCM (RCMs)
 - 3-4 for dry-bulb temperature
 - 1-2 for dew-point temperature
- CCSM (GCMs)
 - 2-3 for dry-bulb temperature
 - 1-4 for dew-point temperature

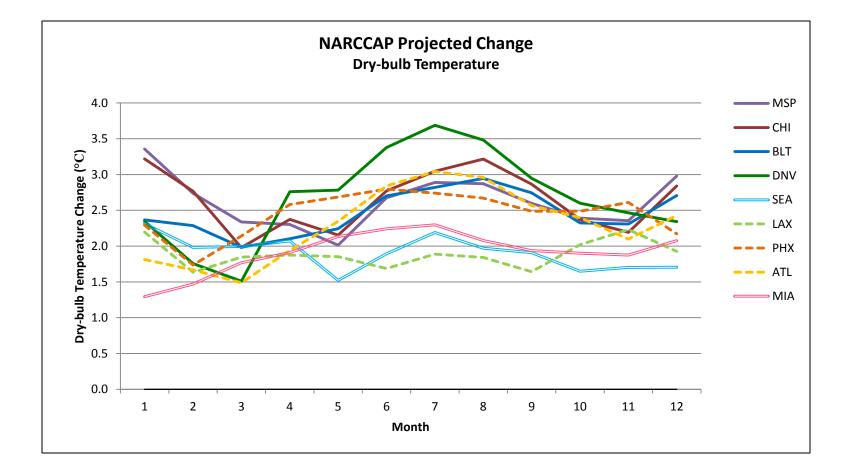
Significance

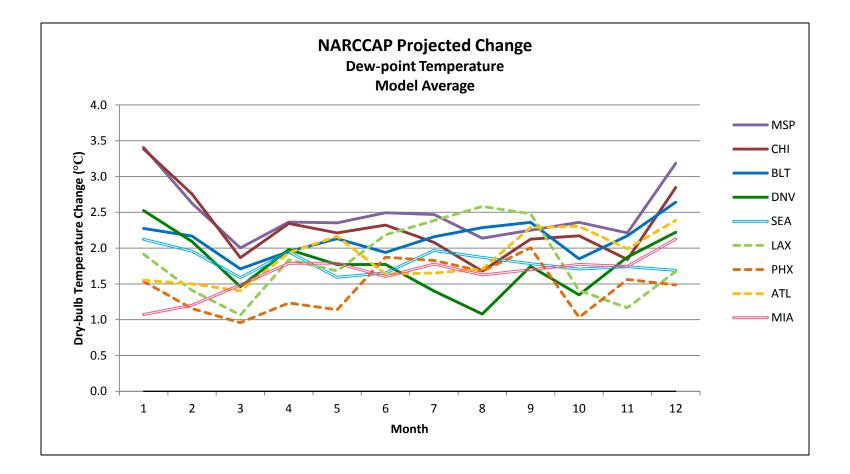
Does the model projected change exceed both the natural variability of the 20th century and inter-model variability?

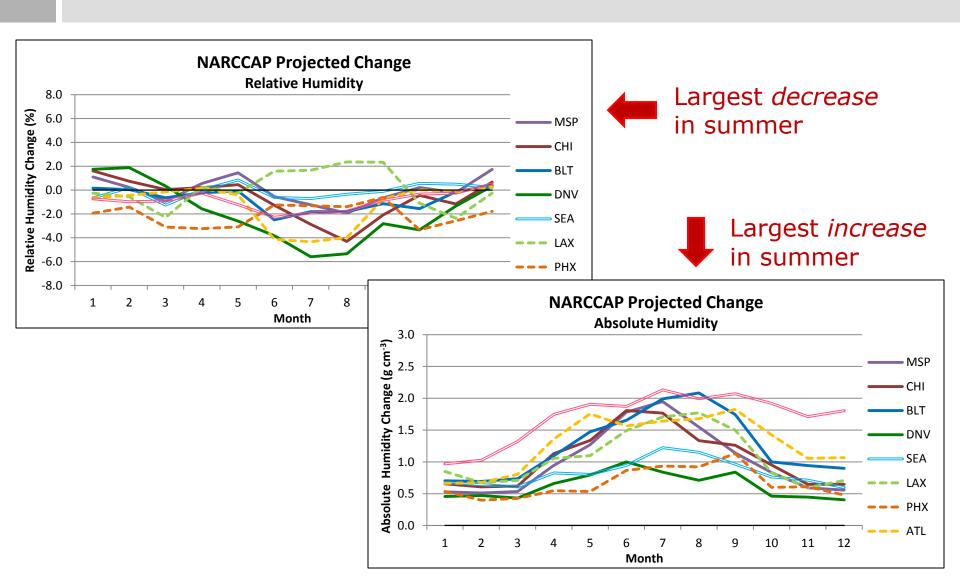
Value	Totcld	Dry-bulb	Dew-point	Rhum	Ahum	Pressure	\mathbf{Wspd}	$\mathbf{W}\mathbf{dir}$	Precip
	\mathbf{tens}	$^{\circ}\mathbf{C}$	$^{\circ}\mathbf{C}$	%	${f g}~{f cm}^{-3}$	mbar	$\mathbf{m} \ \mathbf{s}^{-1}$	deg	$\mathbf{m}\mathbf{m}$
Projected Change	-0.06	2.65	2.30	-0.70	1.06	0.23	-0.05	-3.88	22.50
SD of Model Change	0.11	0.47	0.39	2.00	0.24	0.53	0.08	1.98	51.31
SD of 20th C Obs	0.31	0.89	1.00	2.82	0.42	0.59	0.34	14.69	261.92

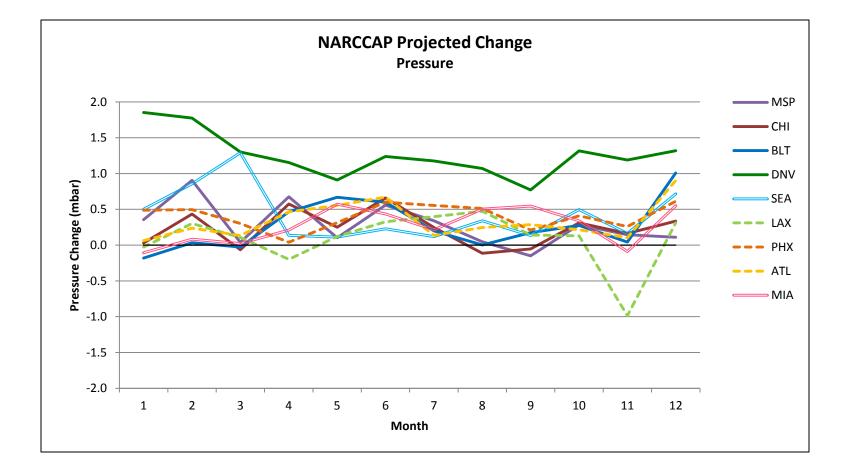
Table 4.2Average Annual Projected Change for Chicago, IL

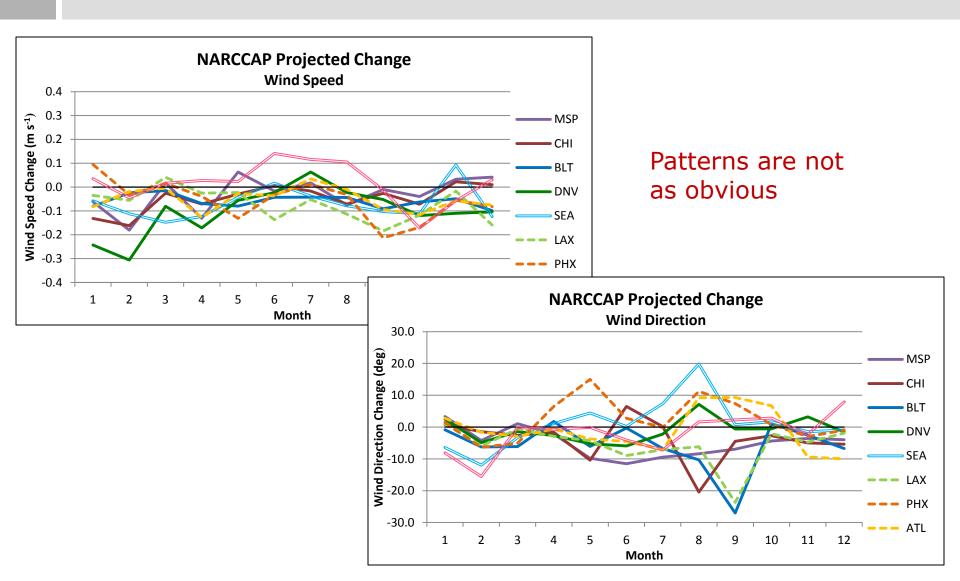

Significance

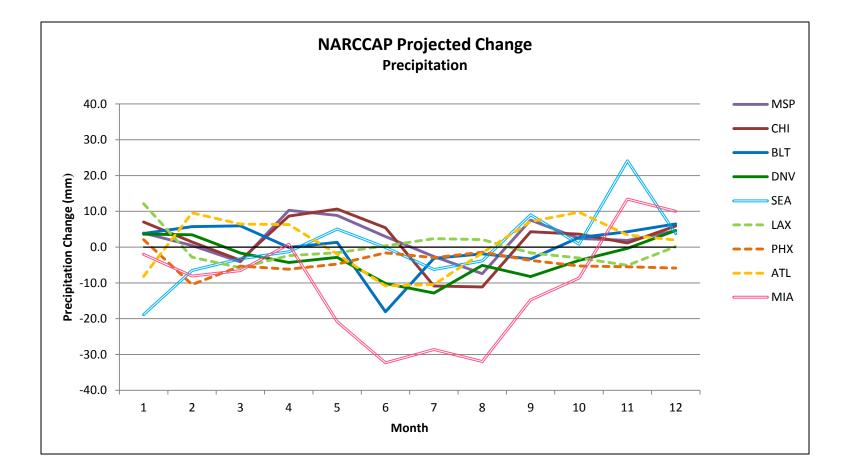

Does the model projected change exceed both the natural variability of the 20th century and inter-model variability?

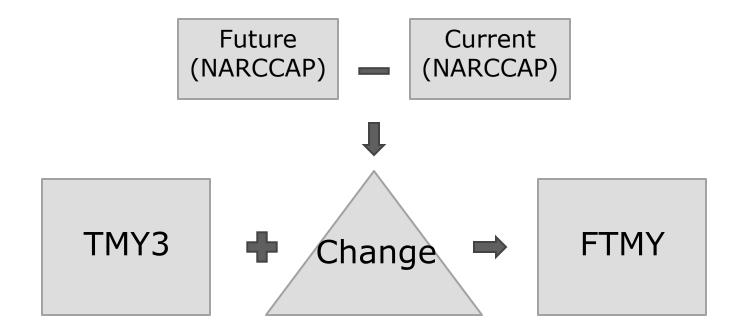

Value	Totcld	Dry-bulb	Dew-point	Rhum	Ahum	Pressure	\mathbf{Wspd}	$\mathbf{W}\mathbf{dir}$	Precip
	\mathbf{tens}	$^{\circ}\mathbf{C}$	$^{\circ}\mathbf{C}$	%	${f g}~{f cm}^{-3}$	mbar	$\mathbf{m} \ \mathbf{s}^{-1}$	deg	$\mathbf{m}\mathbf{m}$
Projected Change	-0.06	2.65	2.30	-0.70	1.06	0.23	-0.05	-3.88	22.50
SD of Model Change	0.11	0.47	0.39	2.00	0.24	0.53	0.08	1.98	51.31
SD of 20th C Obs	0.31	0.89	1.00	2.82	0.42	0.59	0.34	14.69	261.92

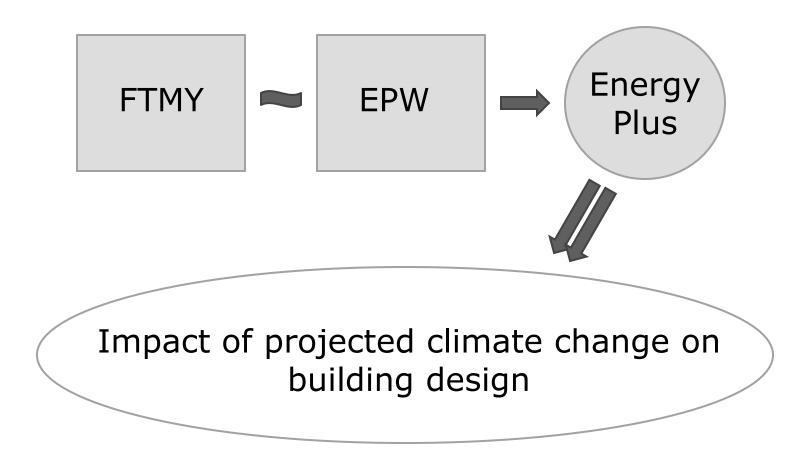

Table 4.2Average Annual Projected Change for Chicago, IL


Seasonal changes








Our study methodology

 Creation of future typical meteorological year (FTMY) dataset

Our study methodology

Simulations of buildings using FTMY

Climate data in energy modeling

 Energy Plus and other modeling software pairs a building design with one weather file to predict energy performance

Projected impact on buildings

Building	Floorspace Buildings Energy Consumption		tion	
Office	17	17	19	
Mercantile	16	14	18	SITE ENERGY CONSUMPTION
Retail	6	9	5	BY END USE
Enclosed/Strip Malls	10	4	13	
Education	14	8	11	ADJUST
Warehouse and Storage	14	12	7	TO SEDS 11%
Lodging	7	3	7	SPACE
Service	6	13	4	OTHER HEATING
Public Assembly	5	6	5	COOKING 2%
Religious Worship	5	8	2	COMPUTERS 2%
Health Care	4	3	0	ELECTRONICS 3%
Inpatient	3	0	6	REFRIGERATION / 14%
Outpatient	2	2	2	5%
Food Sales	2	5	5	VENTILATION 6%
Food Service	2	6	6	
Public Order and Safety	2	1	2	WATER SPACE HEATING 7% COOLING 10%
Other	2	2	4	
Vacant	4	4	1	
Total	100	100	100	

Table 5.1 Principal Commercial Building Types (*D* and *R* International, 2011)

Projected impact on buildings

SITE ENERGY CONSUMPTION BY END USE

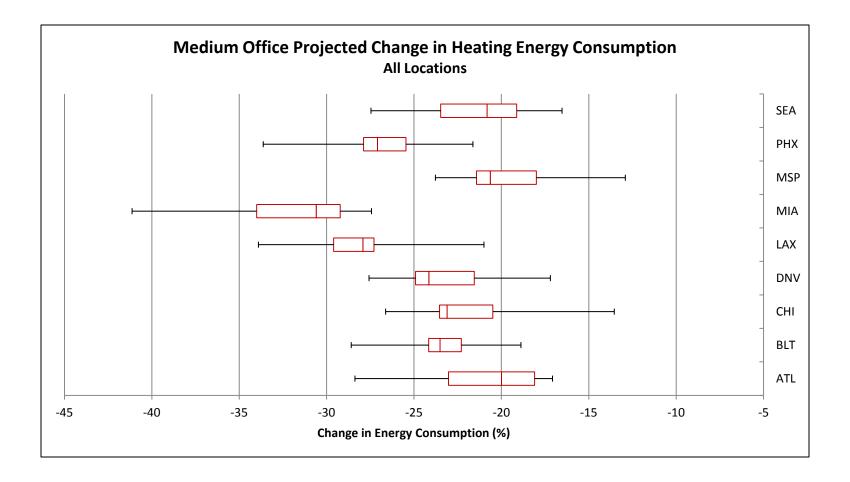
SPACE

HEATING

27%

LIGHTING 14%

SPACE


COOLING 10%

ADJU5T TO SEDS 11%

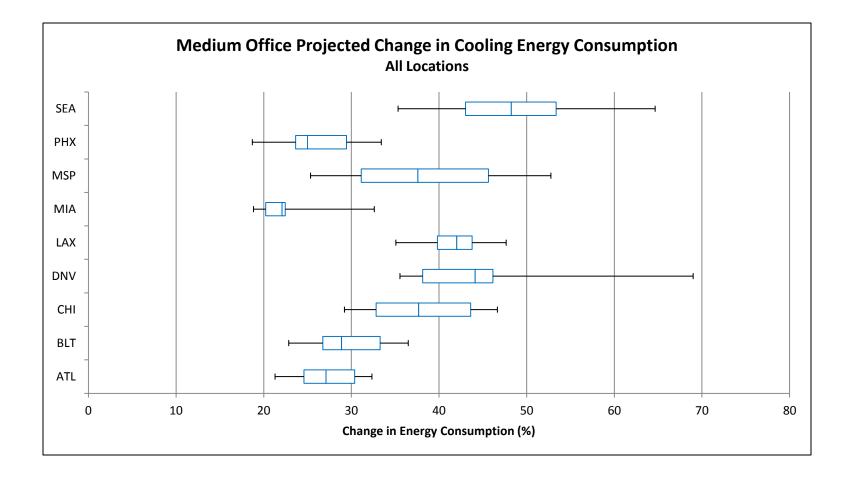
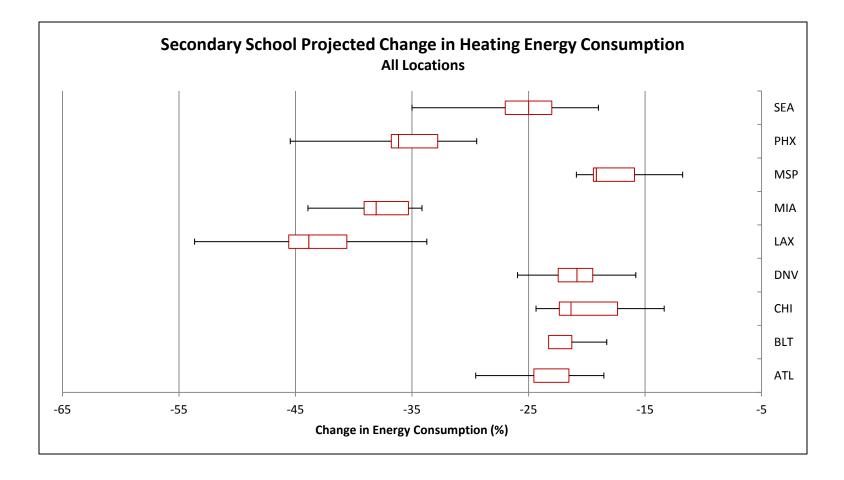
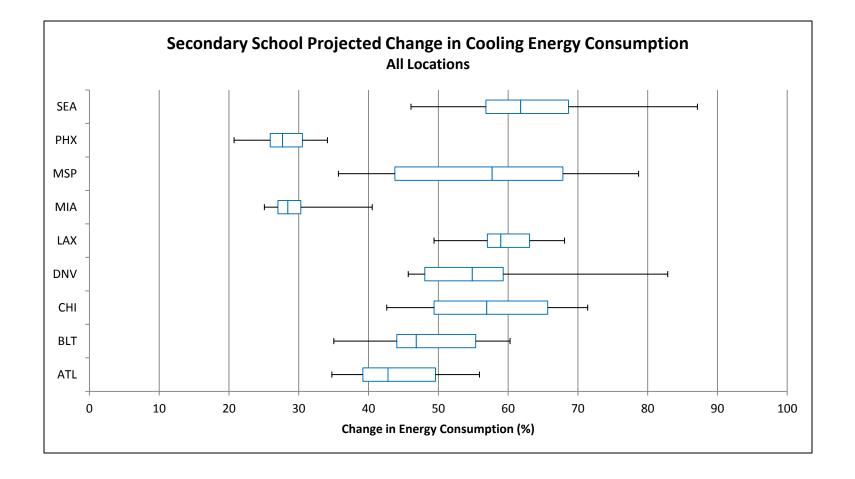

Building	Floorspace	Buildings	Energy Consumpt	tion
Office	17	17	19	
Mercantile	16	14	18	SITE ENERG
Retail	6	9	5	BY
Enclosed/Strip Malls	10	4	13	
Education	14	8	11	ADJU
Warehouse and Storage	14	12	7	TO SE
Lodging	7	3	7	
Service	6	13	4	OTHER 14%
Public Assembly	5	6	5	COOKING 2% -
Religious Worship	5	8	2	COMPUTERS 2%
Health Care	4	3	8 E	LECTRONICS 3%
Inpatient	3	0	6	REFRIGERATION
Outpatient	2	2	2	5%
Food Sales	2	5	5	VENTILATION 6%
Food Service	2	6	6	WATER
Public Order and Safety	2	1	2	HEATING 7%
Other	2	2	4	
Vacant	4	4	1	
Total	100	100	100	

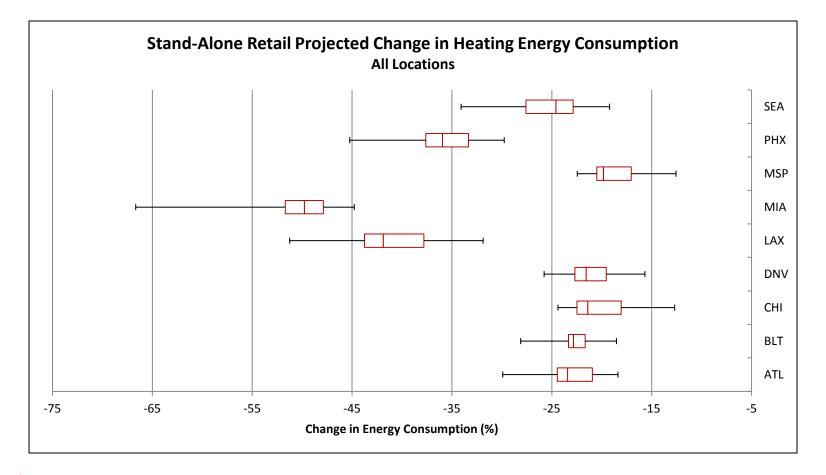
Table 5.1 Principal Commercial Building Types (*D and R International*, 2011)


Range of projected consumption change

Range of projected consumption change

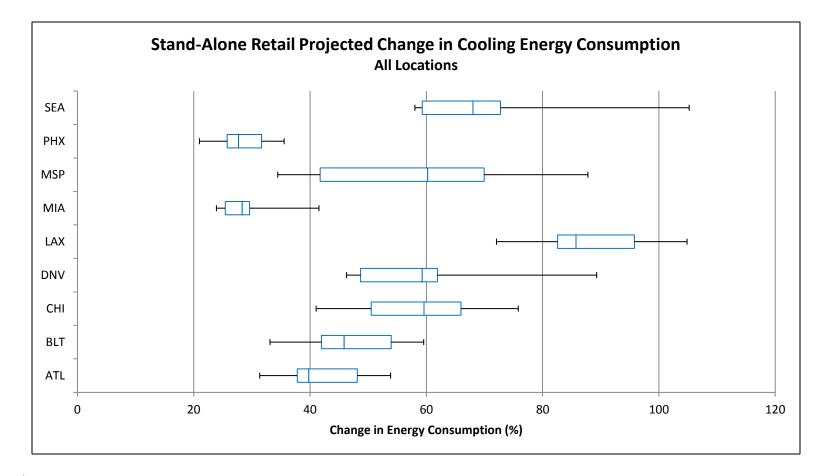


Significance

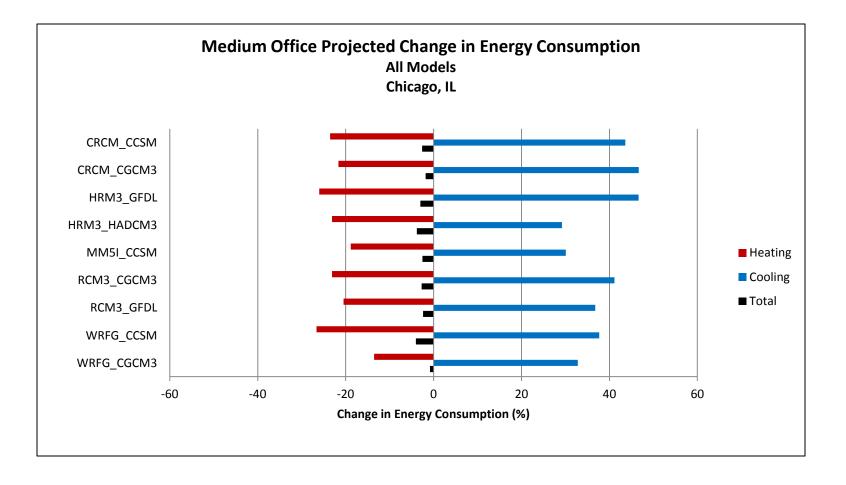


Projected changes are greater than projected ranges

Significance



Latitudinal dependence


Inverse relationship between percentage and magnitude change

Latitudinal dependence

Colder locations will save enough heating energy due to warmer winters to compensate for increase in cooling usage

Balance

Concerns

- Poor quality precipitation data
- Importance of excluded variables
- Possible issue with humidity removal within EnergyPlus simulations
 - Undersized systems?
 - Reference building design flaw?
 - EnergyPlus design flaw?

Conclusions

- Heating energy consumption predicted to decrease.
- Cooling energy consumption predicted to increase.

BUT:

 Overall annual energy consumptions may increase, decrease, or remain steady depending on balance between heating and cooling.

 Future typical meteorological year data can be prepared for risk analysis of a changing climate.

Future work

- > Expand study to suggested modifications or retrofits
 - > Changes in materials
 - Structural changes
 - > Associated costs
- > Impact of extreme weather
- Application to locations world-wide

References

- Arguez, A., R. S. Vose, and J. Dissen (2013), Alternative climate normals: Impacts to the energy industry, Bulletin of the American Meteorological Society, 94 (6), 915{917.
- Belcher, S. E., J. N. Hacker, and D. S. Powell (2005), Constructing design weather data for future climates, Building Services Engineering Research and Technology, 26.
- CCSP (2007), Eects of climate change on energy production and use in the united states, Tech. rep., U. S. Climate Change Science Program, report to the Department of Energy and the Oce of Biological and Environmental Research.
- Chan, A. (2011), Developing future hourly weather les for studying the impact of climate change on building energy performance in hong kong, Energy and Buildings, 43.
- Chen, D., X. Wang, and Z. Ren (2012), Selection of climatic variables and time scales for future weather preparation in building heating and cooling energy predictions, Energy and Buildings, 51.
- Coley, D., and T. Kershaw (2010), Changes in internal temperatures within the built environment as a response to a changing climate, Building and Environment, 45.
- Crawley, D. B. (2008), Estimating the impacts of climate change and urbanization on building performance, Journal of Building Performance Simulation, 1.
- D, and L. R International (2011), Building energy data book, Tech. rep., U.S. Department of Energy.
- Deru, M., and Coauthors (2011), U.s. department of energy commercial reference building models of the national building stock, Tech. rep., National Renewable Energy Laboratory.55
- Executive Oce of the President (2013), The president's climate action plan, Tech. rep., The White House.
- Field, K., M. Deru, and D. Struder (2010), Using doe commercial reference buildings for simulation studies, in SimBuild.
- Guan, L. (2009), Preparation of future weather data to study the impact of climate change on buildings, Building and Environment, 44.

References

- Holmes, S. H., and C. F. Reinhart (2011), Climate change risks from a building owner's perspective: Assessing future climate and energy price scenarios, in Building Simulation.
- Huang, Y. J. (2006), The impact of climate change on the energy use of the us residential and commercial building sectors, Tech. Rep. 60754, Lawrence Berkeley National Laboratory.
- Jentsch, M. F., P. A. B. James, L. Bourikas, and A. S. Bahaj (2013), Transforming existing weather data for worldwide locations to enable energy and building performance simulations under future climates, Renewable Energy, 55.
- Kalney, E., and Coauthors (1996), The ncep/ncar 40-year reanalysis project, Bulletin of the American Meteorological Society, 77.
- Karl, T. R., J. M. Melillo, and T. C. Peterson (2009), Global climate change impacts in the United States, Cambridge University Press.
- Linneman, P., and A. Saiz (2006), Forecasting 2020 U.S. county and MSA populations, The Wharton School.
- Livezey, R. E., K. Y. Vinnikov, M. M. Timofeyeva, R. Tinker, and H. M. V. den Dool (2007), Estimation and extrapolation of climate normals and climatic trends, Journal of Applied Meteorology and Climatology, 46.
- NARCCAP (2010), The narccap output dataset, Available online at http://www.narccap.edu/data/data-tables.html.56
- Rabideau, S., U. Passe, and E. S. Takle (2012), Exploring alternatives to the \typical meteorological year" for incorporating climate change into building design, in ASHRAE Transactions, vol. 118, pp. CH12{CO49.
- Wilcox, S., and W. Marion (2008), Users manual for tmy3 data sets, Technical report, National Renewable Energy Laboratory, revised May 2008.
- Xu, P., Y. J. Huang, N. L. Miller, and N. J. Schlegel (2009), Eects of global climate change on building energy consumption and its implications on building energy codes and policy in california, Tech. rep., Lawrence Berkeley National Laboratory.

Acknowledgements

- Funding provided by:
 - Center for Building Energy Research (CBER) at Iowa State University
 - Institute for Physical Research and Technology (IPRT) at Iowa State University
 - Center for Global and Regional Environmental Research (CGRER) at the University of Iowa
- > Committee: Dr. Gene Takle, Dr. Ulrike Passe, Dr. William Gutowski
- Faculty and graduate students
- > My husband
- > My parents

THANK YOU!!!

